If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t-33=0
a = 1; b = 1; c = -33;
Δ = b2-4ac
Δ = 12-4·1·(-33)
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{133}}{2*1}=\frac{-1-\sqrt{133}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{133}}{2*1}=\frac{-1+\sqrt{133}}{2} $
| y/19=17 | | 27=c/7 | | -4(8-x)=-6(4+3x) | | 21g=756 | | 14=s/15 | | x/x-3=4 | | 10x^2-105x+135=5(2x-3)(x-9) | | 14=s15 | | (n-2)180/n=2160 | | s/31=30 | | 31d=310 | | q/6=25 | | 325-75=(x-200)×.25x | | f/8=19 | | 1/5(285-10x)=x | | 23j=874 | | 325-75=(x-200)x.25x | | 70+30x=2500 | | c/28=31 | | 4g=152 | | 68.96=4c+5 | | X=1/5(285-10x | | (8x-5)=(6x+3) | | 18k=396 | | 38.4=1/2b12.8 | | 4.0x10^11=(x)(0.075+x) | | A=1/2b12.8 | | 21=d/26 | | w/3=27 | | 17x-3=-37 | | −47p=–12 | | 56h=15 |